
CHAPTER

INTERNET APPLICATIONS—
ELECTRONIC MAIL AND NETWORK
MANAGEMENT

22.1 Electronic Mail—SMTP and MIME

22.2 Network Management—SNMP

22.3 Recommended Reading and Web Sites

22.4 Key Terms, Review Questions, and Problems

22

743

744 CHAPTER 22 / INTERNET APPLICATIONS

One of the most exciting aspects of birds’ lives is how they interact with others during
such social activities as defending territories, courting mates, nesting, raising young,
and flocking. Birds’ level of sociability changes with the seasons; they may be
gregarious at certain times of year yet highly territorial at others. Some of the most
fascinating behavior occurs in spring and summer when birds are engaged in
breeding. During a social interaction, an individual is coordinating its activities with
those of another. This inevitably requires communication.

—Secret Lives of Common Birds, Marie Read

KEY TOPICS

• The most widely used protocol for the transmission of electronic mail
is SMTP. SMTP assumes that the content of the message is a simple
text block. The recent MIME standard expands SMTP to support
transmission of multimedia information.

• The most important standardized scheme for supporting network
management applications is the Simple Network Management Proto-
col (SNMP). The original version of SNMP is available on a wide
array of products and is widely used. SNMPv2 contains a number of
functional enhancements to SNMP and is supplanting it. SNMPv3
provides security features that are added on to SNMPv2.

All of the protocols and functions described in Part Five are geared
toward one objective: the support of distributed applications that involve
the interaction of multiple independent systems. In the OSI model, such
applications occupy the application layer and are directly supported by the
presentation layer. In the TCP/IP suite, such applications typically rely on
TCP or UDP for support.

In this chapter, we examine two applications that give the reader a
feel for the range and diversity of applications supported by a communica-
tions architecture. The chapter begins with electronic mail, with the SMTP
and MIME standards as examples; SMTP provides a basic e-mail service,
while MIME adds multimedia capability to SMTP. The chapter then dis-
cusses network management, a support-type application, designed to
assure the effective monitoring and control of a distributed system. The
specific protocol that is examined is the Simple Network Management Pro-
tocol (SNMP), which is designed to operate in both the TCP/IP and OSI
environments.

Refer to Figure 2.5 to see the position within the TCP/IP suite of the
protocols discussed in this chapter.

22.1 / ELECTRONIC MAIL—SMTP AND MIME 745

22.1 ELECTRONIC MAIL—SMTP AND MIME

The most heavily used application in virtually any distributed system is electronic
mail. The Simple Mail Transfer Protocol (SMTP) has always been the workhorse of
the TCP/IP suite. However, SMTP has traditionally been limited to the delivery of
simple text messages. In recent years, there has been a demand for the capability to
deliver mail containing various types of data, including voice, images, and video
clips. To satisfy this requirement, a new electronic mail standard, which builds on
SMTP, has been defined: the Multi-Purpose Internet Mail Extension (MIME). In
this section, we first examine SMTP, and then look at MIME.

Simple Mail Transfer Protocol (SMTP)

SMTP is the standard protocol for transferring mail between hosts in the TCP/IP
suite; it is defined in RFC 821.

Although messages transferred by SMTP usually follow the format defined in
RFC 822, described later, SMTP is not concerned with the format or content of mes-
sages themselves, with two exceptions.This concept is often expressed by saying that
SMTP uses information written on the envelope of the mail (message header), but
does not look at the contents (message body) of the envelope. The two exceptions
are as follows:

1. SMTP standardizes the message character set as 7-bit ASCII.

2. SMTP adds log information to the start of the delivered message that indicates
the path the message took.

Basic Electronic Mail Operation Figure 22.1 illustrates the overall flow of
mail in a typical system.Although much of this activity is outside the scope of SMTP,
the figure illustrates the context within which SMTP typically operates.

To begin, mail is created by a user agent program in response to user input.
Each created message consists of a header that includes the recipient’s e-mail
address and other information, and a body containing the message to be sent. These
messages are then queued in some fashion and provided as input to an SMTP
Sender program, which is typically an always-present server program on the host.

Although the structure of the outgoing mail queue will differ depending on
the host’s operating system, each queued message conceptually has two parts:

1. The message text, consisting of

• The RFC 822 header: This constitutes the message envelope and includes
an indication of the intended recipient or recipients.

• The body of the message, composed by the user.

2. A list of mail destinations.

The list of mail destinations for the message is derived by the user agent from
the 822 message header. In some cases, the destination or destinations are literally
specified in the message header. In other cases, the user agent may need to expand
mailing list names, remove duplicates, and replace mnemonic names with actual

746 CHAPTER 22 / INTERNET APPLICATIONS

Header

Message
body

Header

Message
body

Header

Message
body

Header

Message
body

Header

Message
body

E-mail
client

SMTP
Sender TCP to port 25

on foreign
SMTP receiver

(a) Outgoing mail

User mailboxes

SMTP
receiver TCP from foreign

SMTP sender
to local port 25

(b) Incoming mail

Figure 22.1 SMTP Mail Flow

mailbox names. If any blind carbon copies (BCCs) are indicated, the user agent
needs to prepare messages that conform to this requirement. The basic idea is that
the multiple formats and styles preferred by humans in the user interface are
replaced by a standardized list suitable for the SMTP send program.

The SMTP sender takes messages from the outgoing mail queue and transmits
them to the proper destination host via SMTP transactions over one or more TCP
connections to port 25 on the target hosts. A host may have multiple SMTP senders
active simultaneously if it has a large volume of outgoing mail, and should also have
the capability of creating SMTP receivers on demand so that mail from one host
cannot delay mail from another.

Whenever the SMTP sender completes delivery of a particular message to
one or more users on a specific host, it deletes the corresponding destinations
from that message’s destination list. When all destinations for a particular
message are processed, the message is deleted from the queue. In processing a
queue, the SMTP sender can perform a variety of optimizations. If a particular
message is sent to multiple users on a single host, the message text need be sent
only once. If multiple messages are ready to send to the same host, the SMTP
sender can open a TCP connection, transfer the multiple messages, and then close
the connection rather than opening and closing a connection for each message.

The SMTP sender must deal with a variety of errors. The destination host may
be unreachable, out of operation, or the TCP connection may fail while mail is being
transferred. The sender can requeue the mail for later delivery but give up after

22.1 / ELECTRONIC MAIL—SMTP AND MIME 747

some period rather than keep the message in the queue indefinitely. A common
error is a faulty destination address, which can occur due to user input error or
because the intended destination user has a new address on a different host. The
SMTP sender must either redirect the message if possible or return an error notifi-
cation to the message’s originator.

The SMTP protocol is used to transfer a message from the SMTP sender to
the SMTP receiver over a TCP connection. SMTP attempts to provide reliable oper-
ation but does not guarantee to recover from lost messages. SMTP does not return
an end-to-end acknowledgment to a message’s originator to indicate that a message
is successfully delivered to the message’s recipient. Also, SNMP does not guarantee
to return error indications. However, the SMTP-based mail system is generally con-
sidered reliable.

The SMTP receiver accepts each arriving message and either places it in
the appropriate user mailbox or copies it to the local outgoing mail queue if for-
warding is required. The SMTP receiver must be able to verify local mail desti-
nations and deal with errors, including transmission errors and lack of storage
capacity.

The SMTP sender is responsible for a message up to the point where the
SMTP receiver indicates that the transfer is complete; however, this simply means
that the message has arrived at the SMTP receiver, not that the message has been
delivered to and retrieved by the intended final recipient. The SMTP receiver’s
error-handling responsibilities are generally limited to giving up on TCP connec-
tions that fail or are inactive for very long periods. Thus, the sender has most of the
error recovery responsibility. Errors during completion indication may cause dupli-
cate, but not lost, messages.

In most cases, messages go directly from the mail originator’s machine to the
destination machine over a single TCP connection. However, mail will occasionally
go through intermediate machines via an SMTP forwarding capability, in which case
the message must traverse a series of TCP connections between source and destina-
tion. One way for this to happen is for the sender to specify a route to the destina-
tion in the form of a sequence of servers. A more common event is forwarding
required because a user has moved.

It is important to note that the SMTP protocol is limited to the conversation that
takes place between the SMTP sender and the SMTP receiver. SMTP’s main function
is the transfer of messages, although there are some ancillary functions dealing with
mail destination verification and handling. The rest of the mail-handling apparatus
depicted in Figure 22.1 is beyond the scope of SMTP and may differ from one system
to another.

We now turn to a discussion of the main elements of SMTP.

SMTP Overview The operation of SMTP consists of a series of commands
and responses exchanged between the SMTP sender and receiver. The initiative
is with the SMTP sender, who establishes the TCP connection. Once the connec-
tion is established, the SMTP sender sends commands over the connection to
the receiver. Each command generates exactly one reply from the SMTP
receiver.

748 CHAPTER 22 / INTERNET APPLICATIONS

Table 22.1 SMTP Commands

Name Command Form Description

HELO HELO <SP> <domain> <CRLF> Send identification

MAIL MAIL <SP> FROM:<reverse-path> <CRLF> Identifies originator of mail

RCPT RCPT <SP> TO:<forward-path> <CRLF> Identifies recipient of mail

DATA DATA <CRLF> Transfer message text

RSET RSET <CRLF> Abort current mail transaction

NOOP NOOP <CRLF> No operation

QUIT QUIT <CRLF> Close TCP connection

SEND SEND <SP> FROM:<reverse-path> <CRLF> Send mail to terminal

SOML SOML <SP> FROM:<reverse-path> <CRLF> Send mail to terminal if possible; otherwise
to mailbox

SAML SAML <SP> FROM:<reverse-path> <CRLF> Send mail to terminal and mailbox

VRFY VRFY <SP> <string> <CRLF> Confirm user name

EXPN EXPN <SP> <string> <CRLF> Return membership of mailing list

HELP HELP [<SP> <string>] <CRLF> Send system-specific documentation

TURN TURN <CRLF> Reverse role of sender and receiver

<CRLF> carriage return, line feed
<SP> space
Square brackets denote optional elements.
Shaded commands are optional in a conformant SMTP implementation.

=
=

Table 22.1 lists the SMTP commands. Each command consists of a single
line of text, beginning with a four-letter command code followed in some cases by
an argument field. Most replies are a single-line, although multiple-line replies
are possible. The table indicates those commands that all receivers must be able
to recognize. The other commands are optional and may be ignored by the
receiver.

SMTP replies are listed in Table 22.2. Each reply begins with a three-digit
code and may be followed by additional information. The leading digit indicates the
category of the reply:

• Positive Completion reply: The requested action has been successfully com-
pleted. A new request may be initiated.

• Positive Intermediate reply: The command has been accepted, but the requested
action is being held in abeyance, pending receipt of further information. The
sender-SMTP should send another command specifying this information. This
reply is used in command sequence groups.

• Transient Negative Completion reply: The command was not accepted and the
requested action did not occur. However, the error condition is temporary and
the action may be requested again.

• Permanent Negative Completion reply: The command was not accepted and
the requested action did not occur.

22.1 / ELECTRONIC MAIL—SMTP AND MIME 749

Table 22.2 SMTP Replies

Code Description

Positive Completion Reply

211 System status, or system help reply

214 Help message (Information on how to use the receiver or the meaning of a particular non-standard
command; this reply is useful only to the human user)

220 <domain> Service ready

221 <domain> Service closing transmission channel

250 Requested mail action okay, completed

251 User not local; will forward to <forward-path>

Positive Intermediate Reply

354 Start mail input; end with <CRLF>.<CRLF>

Transient Negative Completion Reply

421 <domain> Service not available, losing transmission channel (This may be a reply to any command
if the service knows it must shut down)

450 Requested mail action not taken: mailbox unavailable (e.g., mailbox busy)

451 Requested action aborted: local error in processing

452 Requested action not taken: insufficient system storage

Permanent Negative Completion Reply

500 Syntax error, command unrecognized (This may include errors such as command line too long)

501 Syntax error in parameters or arguments

502 Command not implemented

503 Bad sequence of commands

504 Command parameter not implemented

550 Requested action not taken: mailbox unavailable (e.g., mailbox not found, no access)

551 User not local; please try <forward-path>

552 Requested mail action aborted: exceeded storage allocation

553 Requested action not taken: mailbox name not allowed (e.g., mailbox syntax incorrect)

554 Transaction failed

Basic SMTP operation occurs in three phases: connection setup, exchange of
one or more command-response pairs, and connection termination. We examine
each phase in turn.

Connection Setup An SMTP sender will attempt to set up a TCP connection
with a target host when it has one or more mail messages to deliver to that host.The
sequence is quite simple:

1. The sender opens a TCP connection with the receiver.

2. Once the connection is established, the receiver identifies itself with “220 Service
Ready.”

750 CHAPTER 22 / INTERNET APPLICATIONS

3. The sender identifies itself with the HELO command.

4. The receiver accepts the sender’s identification with “250 OK.”

If the mail service on the destination is unavailable, the destination
host returns a “421 Service Not Available” reply in step 2 and the process is ter-
minated.

Mail Transfer Once a connection has been established, the SMTP sender may
send one or more messages to the SMTP receiver. There are three logical phases to
the transfer of a message:

1. A MAIL command identifies the originator of the message.

2. One or more RCPT commands identify the recipients for this message.

3. A DATA command transfers the message text.

The MAIL command gives the reverse path, which can be used to report
errors. If the receiver is prepared to accept messages from this originator, it
returns a “250 OK” reply. Otherwise the receiver returns a reply indicating failure
to execute the command (codes 451, 452, 552) or an error in the command (codes
421, 500, 501).

The RCPT command identifies an individual recipient of the mail
data; multiple recipients are specified by multiple use of this command. A
separate reply is returned for each RCPT command, with one of the following
possibilities:

1. The receiver accepts the destination with a 250 reply; this indicates that the
designated mailbox is on the receiver’s system.

2. The destination will require forwarding and the receiver will forward (251).

3. The destination requires forwarding but the receiver will not forward; the sender
must resend to the forwarding address (551).

4. A mailbox does not exist for this recipient at this host (550).

5. The destination is rejected due to some other failure to execute (codes 450,
451, 452, 552, 553) or an error in the command (codes 421, 500, 501, 503).

The advantage of using a separate RCPT phase is that the sender will not send
the message until it is assured that the receiver is prepared to receive the message for
at least one recipient, thereby avoiding the overhead of sending an entire message
only to learn that the destination is unknown. Once the SMTP receiver has agreed to
receive the mail message for at least one recipient, the SMTP sender uses the DATA
command to initiate the transfer of the message. If the SMTP receiver is still pre-
pared to receive the message, it returns a 354 message; otherwise the receiver returns
a reply indicating failure to execute the command (codes 451, 554) or an error in the
command (codes 421, 500, 501, 503). If the 354 reply is returned, the SMTP sender
proceeds to send the message over the TCP connection as a sequence of ASCII lines.
The end of the message is indicated by a line containing only a period. The SMTP
receiver responds with a 250 OK reply if the message is accepted or with the appro-
priate error code (451, 452, 552, 554).

22.1 / ELECTRONIC MAIL—SMTP AND MIME 751

S: MAIL FROM:<Smith@Alpha.ARPA>
R: 250 OK

S: RCPT TO:<Jones@Beta.ARPA>
R: 250 OK

S: RCPT TO:<Green@Beta.ARPA>
R: 550 No such user here

S: RCPT TO:<Brown@Beta.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: <CRLF>.<CRLF>
R: 250 OK

The SMTP sender is transmitting mail that originates with the user
Smith@Alpha.ARPA. The message is addressed to three users on machine Beta.ARPA,
namely, Jones, Green, and Brown. The SMTP receiver indicates that it has mailboxes
for Jones and Brown but does not have information on Green. Because at least one of
the intended recipients has been verified, the sender proceeds to send the text message.

Connection Closing The SMTP sender closes the connection in two steps. First,
the sender sends a QUIT command and waits for a reply. The second step is to initi-
ate a TCP close operation for the TCP connection. The receiver initiates its TCP
close after sending its reply to the QUIT command.

RFC 822 RFC 822 defines a format for text messages that are sent using elec-
tronic mail. The SMTP standard adopts RFC 822 as the format for use in construct-
ing messages for transmission via SMTP. In the RFC 822 context, messages are
viewed as having an envelope and contents. The envelope contains whatever infor-
mation is needed to accomplish transmission and delivery. The contents comprise
the object to be delivered to the recipient.The RFC 822 standard applies only to the
contents. However, the content standard includes a set of header fields that may
be used by the mail system to create the envelope, and the standard is intended to
facilitate the acquisition of such information by programs.

An RFC 822 message consists of a sequence of lines of text and uses a general
“memo” framework. That is, a message consists of some number of header lines,
which follow a rigid format, followed by a body portion consisting of arbitrary text.

A header line usually consists of a keyword, followed by a colon, followed by
the keyword’s arguments; the format allows a long line to be broken up into several

An example, taken from RFC 821, illustrates the process:

752 CHAPTER 22 / INTERNET APPLICATIONS

Another field that is commonly found in RFC 822 headers is Message-ID.This
field contains a unique identifier associated with this message.

Multipurpose Internet Mail Extensions (MIME)

MIME is an extension to the RFC 822 framework that is intended to address some
of the problems and limitations of the use of SMTP and RFC 822 for electronic
mail. [RODR02] lists the following limitations of the SMTP/822 scheme:

1. SMTP cannot transmit executable files or other binary objects. A number of
schemes are in use for converting binary files into a text form that can be used
by SMTP mail systems, including the popular UNIX UUencode/UUdecode
scheme. However, none of these is a standard or even a de facto standard.

2. SMTP cannot transmit text data that includes national language characters
because these are represented by 8-bit codes with values of 128 decimal or
higher, and SMTP is limited to 7-bit ASCII.

3. SMTP servers may reject mail messages over a certain size.

4. SMTP gateways that translate between the character codes ASCII and EBCDIC
do not use a consistent set of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual
data included in X.400 messages.

6. Some SMTP implementations do not adhere completely to the SMTP standards
defined in RFC 821. Common problems include

• Deletion, addition, or reordering of carriage return and linefeed

• Truncating or wrapping lines longer than 76 characters

• Removal of trailing white space (tab and space characters)

• Padding of lines in a message to the same length

• Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible
with existing RFC 822 implementations. The specification is provided in RFCs 2045
through 2049.

Date: Tue, 16 Jan 1996 10:37:17 (EST)
From: “William Stallings” <ws@host.com>
Subject: The Syntax in RFC 822
To: Smith@ Other -Host.com
Cc: Jones@ Yet-Another-Host.com

Hello. This section begins the actual message body, which is delimited
from the message heading by a blank line.

lines.The most frequently used keywords are From,To, Subject, and Date. Here is an
example message:

22.1 / ELECTRONIC MAIL—SMTP AND MIME 753

Overview The MIME specification includes the following elements:

1. Five new message header fields are defined, which may be included in an RFC
822 header. These fields provide information about the body of the message.

2. A number of content formats are defined, thus standardizing representations
that support multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content for-
mat into a form that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two
subsections deal with content formats and transfer encodings.

The five header fields defined in MIME are as follows:

• MIME-Version: Must have the parameter value 1.0. This field indicates that
the message conforms to the RFCs.

• Content-Type: Describes the data contained in the body with sufficient detail that
the receiving user agent can pick an appropriate agent or mechanism to present
the data to the user or otherwise deal with the data in an appropriate manner.

• Content-Transfer-Encoding: Indicates the type of transformation that has
been used to represent the body of the message in a way that is acceptable for
mail transport.

• Content-ID: Used to uniquely identify MIME entities in multiple contexts.
• Content-Description: A plaintext description of the object with the body; this

is useful when the object is not displayable (e.g., audio data).

Any or all of these fields may appear in a normal RFC 822 header. A
compliant implementation must support the MIME-Version, Content-Type, and
Content-Transfer-Encoding fields; the Content-ID and Content-Description fields
are optional and may be ignored by the recipient implementation.

MIME Content Types The bulk of the MIME specification is concerned with
the definition of a variety of content types. This reflects the need to provide stan-
dardized ways of dealing with a wide variety of information representations in a
multimedia environment.

Table 22.3 lists the MIME content types.There are seven different major types
of content and a total of 14 subtypes. In general, a content type declares the general
type of data, and the subtype specifies a particular format for that type of data.

For the text type of body, no special software is required to get the full meaning of
the text, aside from support of the indicated character set. The only defined subtype is
plaintext, which is simply a string of ASCII characters or ISO 8859 characters. An ear-
lier version of the MIME specification included a richtext subtype, which allows greater
formatting flexibility. It is expected that this subtype will reappear in a later RFC.

The multipart type indicates that the body contains multiple, independent
parts. The Content-Type header field includes a parameter, called boundary, that
defines the delimiter between body parts. This boundary should not appear in any
parts of the message. Each boundary starts on a new line and consists of two
hyphens followed by the boundary value. The final boundary, which indicates the
end of the last part, also has a suffix of two hyphens. Within each part, there may be
an optional ordinary MIME header.

754 CHAPTER 22 / INTERNET APPLICATIONS

Table 22.3 MIME Content Types

Type Subtype Description

Text Plain Unformatted text; may be ASCII or ISO 8859.

Multipart Mixed The different parts are independent but are to be transmitted
together. They should be presented to the receiver in the order that
they appear in the mail message.

Parallel Differs from Mixed only in that no order is defined for delivering the
parts to the receiver.

Alternative The different parts are alternative versions of the same information.
They are ordered in increasing faithfulness to the original and the
recipient’s mail system should display the “best” version to the user.

Digest Similar to Mixed, but the default type/subtype of each part is
message/rfc822.

Message rfc822 The body is itself an encapsulated message that conforms to RFC 822.

Partial Used to allow fragmentation of large mail items, in a way that is
transparent to the recipient.

External-body Contains a pointer to an object that exists elsewhere.

Image jpeg The image is in JPEG format, JFIF encoding.

gif The image is in GIF format.

Video mpeg MPEG format.

Audio Basic Single-channel 8-bit ISDN encoding at a sample rate of 8 kHz.

Application PostScript Adobe Postscript

octet-stream General binary data consisting of 8-bit bytes.

m-law

From: John Smith <js@company.com>
To: Ned Jones <ned@soft.com>
Subject: Sample message
MIME-Version: 1.0
Content-type: multipart/mixed; boundary=”simple boundary”

This is the preamble. It is to be ignored, though it is a handy place for mail
composers to include an explanatory note to non-MIME conformant
readers.
—simple boundary

This is implicitly typed plain ASCII text. It does NOT end with a linebreak.
—simple boundary
Content-type: text/plain; charset=us-ascii

This is explicitly typed plain ASCII text. It DOES end with a linebreak.
—simple boundary—

This is the epilogue. It is also to be ignored.

Here is a simple example of a multipart message, containing two parts both
consisting of simple text:

22.1 / ELECTRONIC MAIL—SMTP AND MIME 755

From: John Smith <js@company.com>
To: Ned Jones <ned@soft.com>
Subject: Formatted text mail
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary=”boundary42”

—boundary42

Content-Type: text/plain; charset=us-ascii

...plaintext version of message goes here....
—boundary42
Content-Type: text/richtext

.... RFC 1341 richtext version of same message goes here ...
—boundary42—

There are four subtypes of the multipart type, all of which have the same over-
all syntax. The multipart/mixed subtype is used when there are multiple independent
body parts that need to be bundled in a particular order. For the multipart/parallel
subtype, the order of the parts is not significant. If the recipient’s system is appropriate,
the multiple parts can be presented in parallel. For example, a picture or text part
could be accompanied by a voice commentary that is played while the picture or text
is displayed.

For the multipart/alternative subtype, the various parts are different represen-
tations of the same information. The following is an example:

In this subtype, the body parts are ordered in terms of increasing pref-
erence. For this example, if the recipient system is capable of displaying the
message in the richtext format, this is done; otherwise, the plaintext format
is used.

The multipart/digest subtype is used when each of the body parts is
interpreted as an RFC 822 message with headers. This subtype enables the
construction of a message whose parts are individual messages. For exam-
ple, the moderator of a group might collect e-mail messages from partici-
pants, bundle these messages, and send them out in one encapsulating
MIME message.

The message type provides a number of important capabilities in
MIME. The message/rfc822 subtype indicates that the body is an entire
message, including header and body. Despite the name of this subtype, the
encapsulated message may be not only a simple RFC 822 message, but any
MIME message.

The message/partial subtype enables fragmentation of a large mes-
sage into a number of parts, which must be reassembled at the destination.

756 CHAPTER 22 / INTERNET APPLICATIONS

For this subtype, three parameters are specified in the Content-Type: Message/Par-
tial field:

• id: A value that is common to each fragment of the same message, so that the
fragments can be identified at the recipient for reassembly, but unique across
different messages.

• number: A sequence number that indicates the position of this fragment in the
original message. The first fragment is numbered 1, the second 2, and so on.

• total: The total number of parts. The last fragment is identified by having the
same value for the number and total parameters.

The message/external-body subtype indicates that the actual data to be con-
veyed in this message are not contained in the body. Instead, the body contains the
information needed to access the data. As with the other message types, the mes-
sage/external-body subtype has an outer header and an encapsulated message with
its own header. The only necessary field in the outer header is the Content-Type
field, which identifies this as a message/external-body subtype. The inner header is
the message header for the encapsulated message.

The Content-Type field in the outer header must include an access-type pa-
rameter, which has one of the following values:

• FTP: The message body is accessible as a file using the file transfer protocol
(FTP). For this access type, the following additional parameters are manda-
tory: name, the name of the file; and site, the domain name of the host where
the file resides. Optional parameters are directory, the directory in which the
file is located; and mode, which indicates how FTP should retrieve the file
(e.g., ASCII, image). Before the file transfer can take place, the user will need
to provide a user id and password. These are not transmitted with the message
for security reasons.

• TFTP: The message body is accessible as a file using the trivial file transfer
protocol (TFTP). The same parameters as for FTP are used, and the user id
and password must also be supplied.

• Anon-FTP: Identical to FTP, except that the user is not asked to supply a user
id and password. The parameter name supplies the name of the file.

• local-file: The message body is accessible as a file on the recipient’s machine.

• AFS: The message body is accessible as a file via the global AFS (Andrew File
System). The parameter name supplies the name of the file.

• mail-server: The message body is accessible by sending an e-mail message
to a mail server. A server parameter must be included that gives the e-mail
address of the server. The body of the original message, known as the
phantom body, should contain the exact command to be sent to the mail
server.

The image type indicates that the body contains a displayable image. The sub-
type, jpeg or gif, specifies the image format. In the future, more subtypes will be
added to this list.

The video type indicates that the body contains a time-varying picture image,
possibly with color and coordinated sound.The only subtype so far specified is mpeg.

22.1 / ELECTRONIC MAIL—SMTP AND MIME 757

Table 22.4 MIME Transfer Encodings

7bit The data are all represented by short lines of ASCII characters.

8bit The lines are short, but there may be non-ASCII characters (octets with the high-order
bit set).

binary Not only may non-ASCII characters be present but the lines are not necessarily short
enough for SMTP transport.

quoted-printable Encodes the data in such a way that if the data being encoded are mostly ASCII text, the
encoded form of the data remains largely recognizable by humans.

base64 Encodes data by mapping 6-bit blocks of input to 8-bit blocks of output, all of which are
printable ASCII characters.

x-token A named nonstandard encoding.

The audio type indicates that the body contains audio data. The only subtype,
basic, conforms to an ISDN service known as “64-kbps, 8-kHz Structured, Usable
for Speech Information,” with a digitized speech algorithm referred to as
PCM (pulse code modulation). This general type is the typical way of transmitting
speech signals over a digital network.The term refers to the specific encoding
technique; it is the standard technique used in North America and Japan.A compet-
ing system, known as A-law, is standard in Europe.

The application type refers to other kinds of data, typically either uninter-
preted binary data or information to be processed by a mail-based application. The
application/octet-stream subtype indicates general binary data in a sequence of
octets. RFC 2045 recommends that the receiving implementation should offer to put
the data in a file or use the data as input to a program.

The application/Postscript subtype indicates the use of Adobe Postscript.

MIME Transfer Encodings The other major component of the MIME specifi-
cation, in addition to content type specification, is a definition of transfer encodings
for message bodies. The objective is to provide reliable delivery across the largest
range of environments.

The MIME standard defines two methods of encoding data. The Content-
Transfer-Encoding field can actually take on six values, as listed in Table 22.4.
However, three of these values (7bit, 8bit, and binary) indicate that no encoding
has been done but provide some information about the nature of the data. For
SMTP transfer, it is safe to use the 7bit form. The 8bit and binary forms may be
usable in other mail transport contexts. Another Content-Transfer-Encoding
value is x-token, which indicates that some other encoding scheme is used, for
which a name is to be supplied. This could be a vendor-specific or application-
specific scheme. The two actual encoding schemes defined are quoted-printable
and base64. Two schemes are defined to provide a choice between a transfer tech-
nique that is essentially human readable, and one that is safe for all types of data
in a way that is reasonably compact.

The quoted-printable transfer encoding is useful when the data consist largely
of octets that correspond to printable ASCII characters. In essence, it represents
nonsafe characters by the hexadecimal representation of their code and introduces

m-law

m-law

758 CHAPTER 22 / INTERNET APPLICATIONS

reversible (soft) line breaks to limit message lines to 76 characters. The encoding
rules are as follows:

1. General 8-bit representation: This rule is to be used when none of the other
rules apply. Any character is represented by an equal sign followed by a two-
digit hexadecimal representation of the octet’s value. For example, the ASCII
form feed, which has an 8-bit value of decimal 12, is represented by

2. Literal representation: Any character in the range decimal 33 (“!”) through deci-
mal 126 except decimal 61 is represented as that ASCII character.

3. White space: Octets with the values 9 and 32 may be represented as ASCII tab
and space characters, respectively, except at the end of a line. Any white space
(tab or blank) at the end of a line must be represented by rule 1. On decoding,
any trailing white space on a line is deleted. This eliminates any white space
added by intermediate transport agents.

4. Line breaks: Any line break, regardless of its initial representation, is represented
by the RFC 822 line break, which is a carriage-return/line-feed combination.

5. Soft line breaks: If an encoded line would be longer than 76 characters (exclud-
ing <CRLF>), a soft line break must be inserted at or before character position
75. A soft line break consists of the hexadecimal sequence 3D0D0A, which is
the ASCII code for an equal sign followed by carriage return, line feed.

The base64 transfer encoding , also known as radix-64 encoding, is a common one
for encoding arbitrary binary data in such a way as to be invulnerable to the processing
by mail transport programs. This technique maps arbitrary binary input into printable
character output.The form of encoding has the following relevant characteristics:

1. The range of the function is a character set that is universally representable at
all sites, not a specific binary encoding of that character set. Thus, the charac-
ters themselves can be encoded into whatever form is needed by a specific sys-
tem. For example, the character “E” is represented in an ASCII-based system
as hexadecimal 45 and in an EBCDIC-based system as hexadecimal C5.

2. The character set consists of 65 printable characters, one of which is used for
padding.With available characters, each character can be used to repre-
sent 6 bits of input.

3. No control characters are included in the set.Thus, a message encoded in radix 64
can traverse mail handling systems that scan the data stream for control characters.

4. The hyphen character (“-”) is not used. This character has significance in the
RFC 822 format and should therefore be avoided.

Table 22.5 shows the mapping of 6-bit input values to characters.The character
set consists of the alphanumeric characters plus and “/”. The character is
used as the padding character.

Figure 22.2 illustrates the simple mapping scheme. Binary input is processed in
blocks of 3 octets, or 24 bits. Each set of 6 bits in the 24-bit block is mapped into a
character. In the figure, the characters are shown encoded as 8-bit quantities. In this
typical case, each 24-bit input is expanded to 32 bits of output.

“=”“+”

26 = 64

1“=”2,1“'”2,
“=0C.”

22.1 / ELECTRONIC MAIL—SMTP AND MIME 759

Table 22.5 Radix-64 Encoding

6-Bit Character 6-Bit Character 6-Bit Character 6-Bit Character
Value Encoding Value Encoding Value Encoding Value Encoding

0 A 16 Q 32 g 48 w

1 B 17 R 33 h 49 x

2 C 18 S 34 i 50 y

3 D 19 T 35 j 51 z

4 E 20 U 36 k 52 0

5 F 21 V 37 l 53 1

6 G 22 W 38 m 54 2

7 H 23 X 39 n 55 3

8 I 24 Y 40 o 56 4

9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62

15 P 31 f 47 v 63 /

(pad) =

+

For example, consider the 24-bit raw text sequence 00100011 01011100
10010001, which can be expressed in hexadecimal as 235C91. We arrange this input
in blocks of 6 bits:

001000 110101 110010 010001

The extracted 6-bit decimal values are 8, 53, 50, and 17. Looking these up in Table
22.5 yields the radix-64 encoding as the following characters: I1yR. If these charac-
ters are stored in 8-bit ASCII format with parity bit set to zero, we have

01001001 00110001 01111001 01010010

In hexadecimal, this is 49317952. To summarize,

Input Data

Binary representation 00100011 01011100 10010001

Hexadecimal representation 235C91

Radix-64 Encoding of Input Data

Character representation I1yR

ASCII code (8 bit, zero parity) 01001001 00110001 01111001 01010010

Hexadecimal representation 49317952

760 CHAPTER 22 / INTERNET APPLICATIONS

22.2 NETWORK MANAGEMENT—SNMP

Networks and distributed processing systems are of critical and growing impor-
tance in business, government, and other organizations. Within a given organiza-
tion, the trend is toward larger, more complex networks supporting more
applications and more users. As these networks grow in scale, two facts become
painfully evident:

• The network and its associated resources and distributed applications become
indispensable to the organization.

• More things can go wrong, disabling the network or a portion of the network
or degrading performance to an unacceptable level.

A large, reliable network cannot be put together and managed by human effort
alone. The complexity of such a system dictates the use of automated network man-
agement tools. The urgency of the need for such tools is increased, and the difficulty
of supplying such tools is also increased, if the network includes equipment from
multiple vendors. In response, standards that deal with network management have
been developed, covering services, protocols, and management information base.

This section begins with an introduction to the overall concepts of standard-
ized network management. The remainder of the section is devoted to a discussion
of SNMP, the most widely used network management standard.

Network Management Systems

A network management system is a collection of tools for network monitoring and
control that is integrated in the following senses:

• A single operator interface with a powerful but user-friendly set of commands
for performing most or all network management tasks.

24 bits

4 characters � 32 bits

R64 R64 R64 R64

Figure 22.2 Printable Encoding of Binary Data into Radix-64 Format

22.2 / NETWORK MANAGEMENT—SNMP 761

• A minimal amount of additional equipment. That is, most of the hardware and
software required for network management is incorporated into the existing
user equipment.

A network management system consists of incremental hardware and soft-
ware additions implemented among existing network components. The software
used in accomplishing the network management tasks resides in the host computers
and communications processors (e.g., networks switches, routers). A network man-
agement system is designed to view the entire network as a unified architecture,
with addresses and labels assigned to each point and the specific attributes of each
element and link known to the system. The active elements of the network provide
regular feedback of status information to the network control center.

Simple Network Management Protocol Version 1 (SNMPv1)

SNMP was developed for use as a network management tool for networks and
internetworks operating TCP/IP. It has since been expanded for use in all types
of networking environments. The term simple network management protocol
(SNMP) is actually used to refer to a collection of specifications for network
management that include the protocol itself, the definition of a database, and associ-
ated concepts.

Basic Concepts The model of network management that is used for SNMP
includes the following key elements:

• Management station, or manager

• Agent

• Management information base

• Network management protocol

The management station is typically a standalone device, but may be a capa-
bility implemented on a shared system. In either case, the management station
serves as the interface for the human network manager into the network manage-
ment system. The management station will have, at minimum,

• A set of management applications for data analysis, fault recovery, and so on

• An interface by which the network manager may monitor and control the
network

• The capability of translating the network manager’s requirements into the
actual monitoring and control of remote elements in the network

• A database of network management information extracted from the data-
bases of all the managed entities in the network

Only the last two elements are the subject of SNMP standardization.
The other active element in the network management system is the

management agent. Key platforms, such as hosts, bridges, routers, and hubs, may
be equipped with agent software so that they may be managed from a manage-
ment station. The agent responds to requests for information from a management
station, responds to requests for actions from the management station, and may

762 CHAPTER 22 / INTERNET APPLICATIONS

asynchronously provide the management station with important but unsolicited
information.

To manage resources in the network, each resource is represented as an
object. An object is, essentially, a data variable that represents one aspect of the
managed agent. The collection of objects is referred to as a management informa-
tion base (MIB). The MIB functions as a collection of access points at the agent
for the management station. These objects are standardized across systems of a
particular class (e.g., bridges all support the same management objects). A man-
agement station performs the monitoring function by retrieving the value of MIB
objects. A management station can cause an action to take place at an agent or can
change the configuration settings of an agent by modifying the value of specific
variables.

The management station and agents are linked by a network management
protocol. The protocol used for the management of TCP/IP networks is the Simple
Network Management Protocol (SNMP). An enhanced version of SNMP, known as
SNMPv2, is intended for both TCP/IP- and OSI-based networks. Each of these
protocols includes the following key capabilities:

• Get: Enables the management station to retrieve the value of objects at the
agent

• Set: Enables the management station to set the value of objects at the agent

• Notify: Enables an agent to send unsolicited notifications to the management
station of significant events

In a traditional centralized network management scheme, one host in the
configuration has the role of a network management station; there may be one or
two other management stations in a backup role. The remainder of the devices on
the network contain agent software and a MIB, to allow monitoring and control
from the management station. As networks grow in size and traffic load, such a
centralized system is unworkable. Too much burden is placed on the management
station, and there is too much traffic, with reports from every single agent having to
wend their way across the entire network to headquarters. In such circumstances, a
decentralized, distributed approach works best (e.g., Figure 22.3). In a decentralized
network management scheme, there may be multiple top-level management
stations, which might be referred to as management servers. Each such server might
directly manage a portion of the total pool of agents. However, for many of the
agents, the management server delegates responsibility to an intermediate manager.
The intermediate manager plays the role of manager to monitor and control the
agents under its responsibility. It also plays an agent role to provide information and
accept control from a higher-level management server. This type of architecture
spreads the processing burden and reduces total network traffic.

Network Management Protocol Architecture SNMP is an application-
level protocol that is part of the TCP/IP protocol suite. It is intended to operate over
the user datagram protocol (UDP). Figure 22.4 suggests the typical configuration of
protocols for SNMPv1. For a standalone management station, a manager process
controls access to a central MIB at the management station and provides an inter-
face to the network manager. The manager process achieves network management

22.2 / NETWORK MANAGEMENT—SNMP 763

by using SNMP, which is implemented on top of UDP, IP, and the relevant network-
dependent protocols (e.g., Ethernet, ATM, frame relay).

Each agent must also implement SNMP, UDP, and IP. In addition, there is an
agent process that interprets the SNMP messages and controls the agent’s MIB. For
an agent device that supports other applications, such as FTP,TCP as well as UDP is
required. In Figure 22.4, the shaded portions depict the operational environment:
that which is to be managed.The unshaded portions provide support to the network
management function.

Figure 22.5 provides a somewhat closer look at the protocol context of SNMP.
From a management station, three types of SNMP messages are issued on behalf of a
management applications: GetRequest, GetNextRequest, and SetRequest. The first
two are two variations of the get function. All three messages are acknowledged by
the agent in the form of a GetResponse message, which is passed up to the
management application. In addition, an agent may issue a trap message in response
to an event that affects the MIB and the underlying managed resources. Management
requests are sent to UDP port 161, while the agent sends traps to UDP port 162.

Because SNMP relies on UDP, which is a connectionless protocol, SNMP is
itself connectionless. No ongoing connections are maintained between a manage-
ment station and its agents. Instead, each exchange is a separate transaction
between a management station and an agent.

Ethernet

Central site
Management server

(manager)

Router
(agent)

Ethernet
switch

Ethernet

Ethernet

Intermediate manager
(manager/agent)

Router
(agent)

Router
(agent)

Agent

Agent

Agent

Agent

Agent

Agent

Router
(agent)

Router
(agent)

Router
(agent)

Agent

Agent

Agent

Agent Agent

Agent

Internet

Figure 22.3 Example Distributed Network Management Configuration

764 CHAPTER 22 / INTERNET APPLICATIONS

Simple Network Management Protocol Version 2 (SNMPv2)

In August of 1988, the specification for SNMP was issued and rapidly became the
dominant network management standard. A number of vendors offer standalone
network management workstations based on SNMP, and most vendors of bridges,
routers, workstations, and PCs offer SNMP agent packages that allow their products
to be managed by an SNMP management station.

As the name suggests, SNMP is a simple tool for network management.
It defines a limited, easily implemented MIB of scalar variables and two-
dimensional tables, and it defines a streamlined protocol to enable a manager to
get and set MIB variables and to enable an agent to issue unsolicited notifica-
tions, called traps. This simplicity is the strength of SNMP. SNMP is easily imple-
mented and consumes modest processor and network resources. Also, the
structure of the protocol and the MIB are sufficiently straightforward that it is
not difficult to achieve interoperability among management stations and agent
software from a mix of vendors.

With its widespread use, the deficiencies of SNMP became increasingly appar-
ent; these include both functional deficiencies and a lack of a security facility. As a
result, an enhanced version, known as SNMPv2, was issued (RFCs 1901, 1905 through
1909, and 2578 through 2580). SNMPv2 has quickly gained support, and a number of
vendors announced products within months of the issuance of the standard.

Network-dependent protocols

IP

TCPUDP

FTP, etc.SNMP

User
processes

Agent
process

Host

Network-dependent protocols

IP

TCPUDP

FTP, etc.SNMP

User
processes

Agent
process

HostManagement station

Network-dependent
protocols

IP

UDP

SNMP

Agent
process

Network-dependent
protocols

IP

UDP

SNMP

Manager
processes

Network
manager

Central
MIB

RouterInternet

Figure 22.4 SNMPv1 Configuration

22.2 / NETWORK MANAGEMENT—SNMP 765

1There is a slight fuzziness about the term MIB. In its singular form, the term MIB can be used to refer to
the entire database of management information at a manager or an agent. It can also be used in singular
or plural form to refer to a specific defined collection of management information that is part of an over-
all MIB. Thus, the SNMPv2 standard includes the definition of several MIBs and incorporates, by refer-
ence, MIBs defined in SNMPv1.

The Elements of SNMPv2 As with SNMPv1, SNMPv2 provides a framework
on which network management applications can be built.Those applications, such as
fault management, performance monitoring, accounting, and so on, are outside the
scope of the standard.

SNMPv2 provides the infrastructure for network management. Figure 22.6 is
an example of a configuration that illustrates that infrastructure.

The essence of SNMPv2 is a protocol that is used to exchange management
information. Each “player” in the network management system maintains a local
database of information relevant to network management, known as the MIB. The
SNMPv2 standard defines the structure of this information and the allowable data
types; this definition is known as the structure of management information (SMI).We
can think of this as the language for defining management information.The standard
also supplies a number of MIBs that are generally useful for network management.1

In addition, new MIBs may be defined by vendors and user groups.
At least one system in the configuration must be responsible for network man-

agement. It is here that any network management applications are hosted. There
may be more than one of these management stations, to provide redundancy or
simply to split up the duties in a large network. Most other systems act in the role of
agent. An agent collects information locally and stores it for later access by a

G
et

R
eq

ue
st

G
et

N
ex

tR
eq

ue
st

Se
tR

eq
ue

st

G
et

R
es

po
ns

e

T
ra

p

SNMP management station

SNMP manager

UDP

IP

Network-dependent protocols

G
et

R
eq

ue
st

G
et

N
ex

tR
eq

ue
st

Se
tR

eq
ue

st

G
et

R
es

po
ns

e

T
ra

p

SNMP agent

SNMP agent

UDP

IP

Network-dependent protocols

Network or
internet

SNMP messages

Application
manages objects

Management application

Managed resources

SNMP-managed objects

Figure 22.5 The Role of SNMPv1

766 CHAPTER 22 / INTERNET APPLICATIONS

SNMPv2
manager/agent

Manager server

Management applications

SNMPv2 manager

SNMPv2
manager/agent

Element manager

MIB

MIBMIB

SNMPv2 agent

Agent

MIB

SNMPv2 agent

MIB

SNMPv2 agent

MIB

Figure 22.6 SNMPv2-Managed Configuration

manager. The information includes data about the system itself and may also
include traffic information for the network or networks to which the agent attaches.

SNMPv2 supports either a highly centralized network management strategy or a
distributed one. In the latter case, some systems operate both in the role of manager
and of agent. In its agent role, such a system will accept commands from a superior
management system. Some of those commands relate to the local MIB at the agent.
Other commands require the agent to act as a proxy for remote devices. In this case, the
proxy agent assumes the role of manager to access information at a remote agent, and
then assumes the role of an agent to pass that information on to a superior manager.

All of these exchanges take place using the SNMPv2 protocol, which is a sim-
ple request/response type of protocol. Typically, SNMPv2 is implemented on top of
the user datagram protocol (UDP), which is part of the TCP/IP suite. Because

22.2 / NETWORK MANAGEMENT—SNMP 767

Table 22.6 Allowable Data Types in SNMPv2

Data Type Description

INTEGER Integers in the range of to

UInteger32 Integers in the range of 0 to

Counter32 A nonnegative integer that may be incremented modulo

Counter64 A nonnegative integer that may be incremented modulo

Gauge32 A nonnegative integer that may increase or decrease, but shall not exceed a
maximum value. The maximum value can not be greater than

TimeTicks A nonnegative integer that represents the time, modulo in hundredths of a
second.

OCTET STRING Octet strings for arbitrary binary or textual data; may be limited to 255 octets.

IpAddress A 32-bit internet address.

Opaque An arbitrary bit field.

BIT STRING An enumeration of named bits.

OBJECT IDENTIFIER Administratively assigned name to object or other standardized element.
Value is a sequence of up to 128 nonnegative integers.

232,

232 - 1.

264.

232.

232 - 1.

231 - 1.-231

SNMPv2 exchanges are in the nature of discrete request-response pairs, an ongoing
reliable connection is not required.

Structure of Management Information The SMI defines the general
framework within which a MIB can be defined and constructed. The SMI identifies
the data types that can be used in the MIB, and how resources within the MIB are
represented and named. The philosophy behind SMI is to encourage simplicity and
extensibility within the MIB. Thus, the MIB can store only simple data types:
scalars and two-dimensional arrays of scalars, called tables. The SMI does not sup-
port the creation or retrieval of complex data structures. This philosophy is in con-
trast to that used with OSI systems management, which provides for complex data
structures and retrieval modes to support greater functionality. SMI avoids com-
plex data types and structures to simplify the task of implementation and to
enhance interoperability. MIBs will inevitably contain vendor-created data types
and, unless tight restrictions are placed on the definition of such data types, inter-
operability will suffer.

There are three key elements in the SMI specification. At the lowest level, the
SMI specifies the data types that may be stored. Then the SMI specifies a formal
technique for defining objects and tables of objects. Finally, the SMI provides a
scheme for associating a unique identifier with each actual object in a system, so
that data at an agent can be referenced by a manager.

Table 22.6 shows the data types that are allowed by the SMI. This is a fairly
restricted set of types. For example, real numbers are not supported. However, it is
rich enough to support most network management requirements.

Protocol Operation The heart of the SNMPv2 framework is the protocol itself.
The protocol provides a straightforward, basic mechanism for the exchange of man-
agement information between manager and agent.

768 CHAPTER 22 / INTERNET APPLICATIONS

(d) variable-bindings

name1 value1 name2 value2 • • • namen valuen

PDU type request-id non-repeaters max-repetitions variable-bindings

(c) GetBulkRequest-PDU

PDU type request-id error-status error-index variable-bindings

(b) Response-PDU

PDU type request-id 0 0 variable-bindings

(a) GetRequest-PDU, GetNextRequest-PDU, SetRequest-PDU, SNMPv2-Trap-PDU, InformRequest-PDU

t

Figure 22.7 SNMPv2 PDU Format

The basic unit of exchange is the message, which consists of an outer message
wrapper and an inner protocol data unit (PDU). The outer message header deals
with security and is discussed later in this section.

Seven types of PDUs may be carried in an SNMP message. The general for-
mats for these are illustrated informally in Figure 22.7. Several fields are common to
a number of PDUs. The request-id field is an integer assigned such that each out-
standing request can be uniquely identified. This enables a manager to correlate
incoming responses with outstanding requests. It also enables an agent to cope with
duplicate PDUs generated by an unreliable transport service. The variable-bindings
field contains a list of object identifiers; depending on the PDU, the list may also
include a value for each object.

The GetRequest-PDU, issued by a manager, includes a list of one or more
object names for which values are requested. If the get operation is successful, then
the responding agent will send a Response-PDU.The variable-bindings list will con-
tain the identifier and value of all retrieved objects. For any variables that are not in
the relevant MIB view, its identifier and an error code are returned in the variable-
bindings list. Thus, SNMPv2 permits partial responses to a GetRequest, which is a
significant improvement over SNMP. In SNMP, if one or more of the variables in a
GetRequest is not supported, the agent returns an error message with a status of
noSuchName.To cope with such an error, the SNMP manager must either return no
values to the requesting application, or it must include an algorithm that responds to
an error by removing the missing variables, resending the request, and then sending
a partial result to the application.

The GetNextRequest-PDU also is issued by a manager and includes a list of
one or more objects. In this case, for each object named in the variable-bindings
field, a value is to be returned for the object that is next in lexicographic order,
which is equivalent to saying next in the MIB in terms of its position in the tree
structure of object identifiers. As with the GetRequest-PDU, the agent will
return values for as many variables as possible. One of the strengths of the
GetNextRequest-PDU is that it enables a manager entity to discover the
structure of a MIB view dynamically. This is useful if the manager does not know

22.2 / NETWORK MANAGEMENT—SNMP 769

a priori the set of objects that are supported by an agent or that are in a particu-
lar MIB view.

One of the major enhancements provided in SNMPv2 is the GetBulkRequest
PDU. The purpose of this PDU is to minimize the number of protocol exchanges
required to retrieve a large amount of management information. The GetBulkRe-
quest PDU allows an SNMPv2 manager to request that the response be as large as
possible given the constraints on message size.

The SetRequest-PDU is issued by a manager to request that the values of
one or more objects be altered. The receiving SNMPv2 entity responds with a
Response-PDU containing the same request-id. The SetRequest operation is
atomic: Either all of the variables are updated or none are. If the responding
entity is able to set values for all of the variables listed in the incoming variable-
bindings list, then the Response-PDU includes the variable-bindings field, with
a value supplied for each variable. If at least one of the variable values cannot be
supplied, then no values are returned, and no values are updated. In the latter
case, the error-status code indicates the reason for the failure, and the error-
index field indicates the variable in the variable-bindings list that caused the
failure.

The SNMPv2-Trap-PDU is generated and transmitted by an SNMPv2 entity
acting in an agent role when an unusual event occurs. It is used to provide the man-
agement station with an asynchronous notification of some significant event. The
variable-bindings list is used to contain the information associated with the trap
message. Unlike the GetRequest, GetNextRequest, GetBulkRequest, SetRequest,
and InformRequest-PDUs, the SNMPv2-Trap-PDU does not elicit a response from
the receiving entity; it is an unconfirmed message.

The InformRequest-PDU is sent by an SNMPv2 entity acting in a manager
role, on behalf of an application, to another SNMPv2 entity acting in a manager role,
to provide management information to an application using the latter entity.As with
the SNMPv2-Trap-PDU, the variable-bindings field is used to convey the associated
information. The manager receiving an InformRequest acknowledges receipt with a
Response-PDU.

For both the SNMPv2-Trap and the InformRequest, various conditions can be
defined that indicate when the notification is generated; the information to be sent
is also specified.

Simple Network Management Protocol Version 3 (SNMPv3)

Many of the functional deficiencies of SNMP were addressed in SNMPv2. To cor-
rect the security deficiencies of SNMPv1/v2, SNMPv3 was issued as a set of Pro-
posed Standards in January 1998 (currently RFCs 2570 through 2575). This set of
documents does not provide a complete SNMP capability but rather defines an
overall SNMP architecture and a set of security capabilities. These are intended to
be used with the existing SNMPv2.

SNMPv3 provides three important services: authentication, privacy, and access
control.The first two are part of the User-Based Security model (USM), and the last
is defined in the View-Based Access Control Model (VACM). Security services are
governed by the identity of the user requesting the service; this identity is expressed

770 CHAPTER 22 / INTERNET APPLICATIONS

as a principal, which may be an individual or an application or a group of individu-
als or applications.

The authentication mechanism in USM assures that a received message was
transmitted by the principal whose identifier appears as the source in the message
header. This mechanism also assures that the message has not been altered in
transit and has not been artificially delayed or replayed. The sending principal
provides authentication by including a message authentication code with the
SNMP message it is sending.This code is a function of the contents of the message,
the identity of the sending and receiving parties, the time of transmission, and a
secret key that should be known only to sender and receiver. The secret key must
be set up outside of USM as a configuration function. That is, the configuration
manager or network manager is responsible for distributing secret keys to be
loaded into the databases of the various SNMP managers and agents. This can be
done manually or using some form of secure data transfer outside of USM. When
the receiving principal gets the message, it uses the same secret key to calculate
the message authentication code once again. If the receiver’s version of the code
matches the value appended to the incoming message, then the receiver knows
that the message can only have originated from the authorized manager and that
the message was not altered in transit. The shared secret key between sending and
receiving parties must be preconfigured. The actual authentication code used is
known as HMAC, which is an Internet-standard authentication mechanism.

The privacy facility of USM enables managers and agents to encrypt messages.
Again, manager principal and agent principal must share a secret key. In this case, if
the two are configured to use the privacy facility, all traffic between them is encrypted
using the Data Encryption Standard (DES). The sending principal encrypts the mes-
sage using the DES algorithm and its secret key and sends the message to the receiv-
ing principal, which decrypts it using the DES algorithm and the same secret key.

The access control facility makes it possible to configure agents to provide dif-
ferent levels of access to the agent’s MIB to different managers. An agent principal
can restrict access to its MIB for a particular manager principal in two ways. First, it
can restrict access to a certain portion of its MIB. For example, an agent may restrict
most manager parties to viewing performance-related statistics and only allow a sin-
gle designated manager principal to view and update configuration parameters. Sec-
ond, the agent can limit the operations that a manager can use on that portion of the
MIB. For example, a particular manager principal could be limited to read-only
access to a portion of an agent’s MIB. The access control policy to be used by an
agent for each manager must be preconfigured and essentially consists of a table
that detail the access privileges of the various authorized managers.

22.3 RECOMMENDED READING AND WEB SITES

[KHAR98] provides an overview of SMTP. [ROSE98] provides a book-length treatment of
electronic mail, including some coverage of SMTP and MIME. [STAL99] provides a compre-
hensive and detailed examination of SNMP, SNMPv2, and SNMPv3; the book also provides
an overview of network management technology. One of the few textbooks on the subject of
network management is [SUBR00].

22.4 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 771

KHAR98c Khare, R. “The Spec’s in the Mail.” IEEE Internet Computing,
September/October 1998.

ROSE98 Rose, M., and Strom, D. Internet Messaging: From the Desktop to the Enter-
prise. Upper Saddle River, NJ: Prentice Hall, 1998.

STAL99 Stallings, W. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Reading, MA:
Addison-Wesley, 1999.

SUBR00 Subranamian, M. Network Management: Principles and Practice. Reading, MA:
Addison-Wesley, 2000.

Recommended Web sites:

• SMTP/MIME RFCS: A complete list, maintained by IETF.
• Simple Web Site: Maintained by the University of Twente. It is a good source of

information on SNMP, including pointers to many public-domain implementa-
tions and lists of books and articles.

22.4 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

Review Questions

22.1 What is the difference between the RFC 821 and RFC 822?
22.2 What are the SMTP and MIME standards?
22.3 What is the difference between a MIME content type and a MIME transfer

encoding?
22.4 Briefly explain radix-64 encoding.
22.5 What is a network management system?
22.6 List and briefly define the key elements of SNMP.
22.7 What functions are provided by SNMP?
22.8 What are the differences among SNMPv1, SNMPv2, and SNMPv3?

Problems

22.1 Electronic mail systems differ in the manner in which multiple recipients are handled.
In some systems, the originating user agent or mail sender makes all the necessary

agent
base64
electronic mail
management information base

(MIB)

management station
Multipurpose Internet Mail

Extension (MIME)
network management protocol
network management system

radix-64 encoding
Simple Mail Transfer Protocol

(SMTP)
Simple Network Management

Protocol (SNMP)

772 CHAPTER 22 / INTERNET APPLICATIONS

copies and these are sent out independently. An alternative approach is to determine
the route for each destination first. Then a single message is sent out on a common
portion of the route and copies are only made when the routes diverge; this process is
referred to as mail-bagging. Discuss the relative advantages and disadvantages of the
two methods.

22.2 Excluding the connection establishment and termination, what is the minimum num-
ber of network round trips to send a small email message using SMTP?

22.3 Explain the differences between the intended use for the quoted-printable and
Base64 encodings

22.4 Suppose you need to send one message to three different users: user1@example.com,
user2@example.com, and user3@example.com. Is there any difference between send-
ing one separate message per user and sending only one message with multiple
(three) recipients? Explain.

22.5 We’ve seen that the character sequence “<CR><LF>.<CR><LF>” indicates the end
of mail data to a SMTP-server.What happens if the mail data itself contains that char-
acter sequence?

22.6 Users are free to define and use additional header fields other than the ones defined
in RFC 822. Such header fields must begin with the string “X-”. Why?

22.7 Suppose you find some technical problems with the mail account user@example.com.
Who should you try to contact in order to solve them?

22.8 Although TCP is a full-duplex protocol, SMTP uses TCP in a half-duplex fashion.The
client sends a command and then stops and waits for the reply. How can this half-
duplex operation fool the TCP slow start mechanism when the network is running
near capacity?

22.9 The original (version 1) specification of SNMP has the following definition of a new
type:
Gauge ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)

The standard includes the following explanation of the semantics of this type:
This application-wide type represents a non-negative integer, which may
increase or decrease, but which latches at a maximum value. This standard
specifies a maximum value of (4294967295 decimal) for gauges.

Unfortunately, the word latch is not defined, and this has resulted in two different
interpretations. The SNMPv2 standard cleared up the ambiguity with the following
definition:

The value of a Gauge has its maximum value whenever the information being
modeled is greater than or equal to that maximum value; if the information
being modeled subsequently decreases below the maximum value, the Gauge
also decreases.

a. What is the alternative interpretation?
b. Discuss the pros and cons of the two interpretations.

22.10 Because SNMP uses two different port numbers (UDP ports 161 and 162), a single
system can easily run both a manager and an agent. What would happen if the same
port number were used for both?

232 - 1

